Verschleiss Tribologie
Der Reibungskoeffizient, auch Reibungszahl genannt (Formelzeichen µ oder auch f, dimensionslos), ist ein Mass für die Reibungskraft im Verhältnis zur Anpresskraft zwischen zwei Körpern. Der Begriff gehört zum Fachgebiet der Tribologie.
Physikalische Bedeutung
Bei der Angabe eines Reibungskoeffizienten wird zwischen Gleitreibung und Haftreibung unterschieden: Bei der Gleitreibung bewegen sich die Reibflächen relativ zueinander, während sie dies bei der Haftreibung nicht tun. Im Fall der Coulombschen Reibung ist der Gleitbeiwert konstant. In der Praxis ist eine entsprechende Temperatur-, Geschwindigkeits- und Druckabhängigkeit zu erkennen, welche auf einen Einfluss der Oberflächenänderung und Beschaffenheit der niemals ideal ebenen Fläche hindeutet (aber nicht auf den Reibwert selbst) und damit die Materialeigenschaft scheinbar beeinflusst.
Gemessen wird der Reibungskoeffizient bei Metallen an polierten Oberflächen, um eine mechanische Verzahnung (Formschluss) weitgehend ausschliessen zu können. Ausschlaggebend sind die Adhäsions- und Kohäsionskräfte zwischen den Materialien. Es bilden sich je nach Material Van-der-Waals-Kräfte oder in polarisierten Werkstoffen wasserstoffbrücken ähnliche Kräfte zwischen den Oberflächen. Am höchsten ist die Werkstoffhaftung bei ionischen Werkstoffen.
Berechnung der Reibungskraft
Mit Hilfe des Reibungskoeffizienten lässt sich die maximale Haft- bzw. die Gleitreibungskraft zwischen zwei Körpern berechnen.
Haftreibung:
maximale Haftreibung:
Gleitreibung:
Dabei ist FR die Reibungskraft, µH bzw. µG der Reibungskoeffizient und FN die Normalkraft (Kraft senkrecht zur Fläche). Der Reibungskoeffizient bestimmt also, wie groß die Reibungskraft im Verhältnis zur Normalkraft ist; eine höhere Reibungszahl bedeutet eine grössere Reibungskraft.
Um beispielsweise einen Metallklotz zu schieben, muss man zunächst eine Kraft aufbringen, die höher als die Haftreibungskraft ist. Wenn der Klotz dann über den Untergrund gleitet, so reicht die kleinere Gleitreibungskraft. Weil die Reibkoeffizienten vom Untergrund (trocken, nass, ...) abhängig sind, hängen im gleichen Masse auch die Reibkräfte davon ab.
Um die Haftung zu verändern, kann man auch die Normalkraft verändern, was sich wiederum aus der Formel erkennen lässt. Auf der Ebene entspricht die Normalkraft der Gewichtskraft. Im Motorsport wird die Normalkraft durch Spoiler erhöht, die den von vorne kommenden Wind zum Anpressen des Fahrzeugs an den Boden nutzen. Auf Rennstrecken werden oft Kurven angeschrägt, um die Haftfläche der resultierenden Kraft aus Gewichtskraft und Fliehkraft anzupassen; somit wird auch hier die Normalkraft erhöht, um eine höhere Haftung zu erzielen. Diese Gegebenheiten fliessen auch in die geometrische Kantenformen und die Herstellungsprozesse der Kantenausführungen der Druck- und Walzenrakel mit ein.
Beispiele:
Die Reibungskoeffizienten aus Tabellen sind immer nur ungefähre Angaben. Die Reibung hängt von vielen unterschiedlichen Faktoren ab (Materialpaarung, Oberfläche, Schmierung, Temperatur, Feuchte, Verschleiss, Normalkraft etc.), so dass in einer Tabelle nicht die "richtigen" Werte gefunden werden können.
Die genauesten Ergebnisse erhält man aus einem Versuch unter realen Bedingungen. Auch hier ist jedoch zu beachten, dass sich die Verhältnisse zwischen Versuch und realem Einsatz ändern können.
Gleitreibungszahlen µG (Richtwerte) |
||||
Materialpaarung |
trocken |
wenig fettig |
geschmiert |
mit Wasser |
Bronze auf Bronze |
0,20 |
0,06 |
||
Bronze auf Grauguss |
0,21 |
0,08 |
||
Bronze auf Stahl |
0,18 |
0,16 |
0,07 |
|
Grauguss auf Bronze |
0,20 |
0,15 |
0,08 |
|
Grauguss auf Grauguss |
0,28 |
0,15 |
0,08 |
0,31 |
Stahl auf Bronze |
0,18 |
0,16 |
0,07 |
|
Stahl auf Grauguss |
0,18 |
0,01 |
||
Stahl auf Stahl |
0,12 |
0,01 |
||
Stahl auf Messing |
0,2 |
|||
Stahl auf Weissmetall |
0,2 |
0,1 |
0,04 |
Innere Reibung
Innere Reibung bewirkt die Zähigkeit von Materialien und Fluiden und hat Einfluss auf Verformungen und Strömungen. Neben der Bewegung der Teilchen in einem Stoff beschreibt die innere Reibung auch den Reibungswiderstand von Körpern, die sich in Fluiden bewegen, sowie die Dämpfung von Schallwellen. Typischerweise nimmt in Gasen die innere Reibung (Viskosität) mit der Temperatur zu, und in Flüssigkeiten ab. In einfachen Fällen ist mit den Mitteln der statistischen Physik eine quantitative Beschreibung möglich.
Bei Temperaturen nahe dem Temperaturnullpunkt verlieren einige Flüssigkeiten ihre innere Reibung vollkommen.
Anders als in der Mechanik, in der die Reibung so lange wie möglich vernachlässigt wird, ist innere Reibung in der Standardtheorie der Hydrodynamik, den Navier-Stokes-Gleichungen, fest enthalten. Diese nichtlinearen Gleichungen sind im Allgemeinen nur numerisch lösbar. Für den Fall kleiner Reynolds-Zahl Re, wenn also die Advektion von Impuls gegenüber dem Impulstransport durch Viskosität vernachlässigt werden kann, existieren für einfache Geometrien und Newtonsche Fluide geschlossene Lösungen:
Das gilt beispielsweise für eine dünne Schicht von Schmiermittel zwischen sich gegeneinander bewegenden Flächen. Die Reibung ist dann proportional zur Scherrate, also zur Geschwindigkeit v. Dieselben Verhältnisse liegen für den Fall einer kleinen Kugel in einem zähen Fluid vor, siehe das Gesetz von Stokes. Bei dominierender Impulsadvektion ist dagegen die Dissipation proportional zum Quadrat der Geschwindigkeit, siehe Strömungswiderstand.
Die plastische Verformung von Festkörpern ist in der Regel stark nichtlinear und damit nicht gut durch die Viskosität zu beschreiben. Auch bei kleineren Kräften oder Spannungen, gibt es Abweichungen von der Idealen Elastizität als eine andere Art der inneren Reibung im Festkörper, die sich aber auch nicht einfach als Viskosität verstehen lässt. Entsprechend ist die Gleichsetzung von innerer Reibung und Viskosität auf Fluide beschränkt. Die Fluide beim Drucken sollten somit bei der Wahl des richtigen Prozessrakels miteinfliessen.
Die Optimierung von Reibungsvorgängen ist Gegenstand der Tribologie.